貸款
計算不同複利期和計息期的年金
誰能幫我解決這個問題?
2010 年 7 月,邁克每半年將 100 美元存入一個賬戶,每季度複利一次,名義年利率為 7%,為期三年。2013 年 7 月,他將存款增加到每 6 個月 200 美元,但當年的利率降至 5%。2014 年 7 月,他以 6% 的固定利率在銀行再存入 2000 美元(除了之前的存款),為期 5 年。2014 年 7 月至 2018 年底的利率保持在 6%。找出他在 2018 年底儲蓄的價值。
感謝@D Stanley 的提示
+------------------+-----------+--------------+--------------+---------+---------------------+ | |deposits |principals** |interest rate |interest*|accumulated interest | +------------------+-----------+--------------+--------------+---------+---------------------+ |2nd half 2010 |100 |100 |0.07 |3.53 |3.53 | |1st half 2011 |200 |203.53 |0.07 |7.19 |10.72 | |2nd half 2011 |300 |310.72 |0.07 |10.97 |21.69 | |1st half 2012 |400 |421.69 |0.07 |14.89 |36.57 | |2nd half 2012 |500 |536.57 |0.07 |18.94 |55.52 | |1st half 2013 |600 |655.52 |0.07 |23.14 |78.66 | |2nd half 2013 |800 |878.66 |0.05 |22.10 |100.77 | |1st half 2014 |1000 |1100.77 |0.05 |27.69 |128.46 | |2nd half 2014 |3200 |3328.46 |0.06 |100.60 |229.06 | |1st half 2015 |3400 |3629.06 |0.06 |109.69 |338.75 | |2nd half 2015 |3600 |3938.75 |0.06 |119.05 |457.80 | |1st half 2016 |3800 |4257.80 |0.06 |128.69 |586.49 | |2nd half 2016 |4000 |4586.49 |0.06 |138.63 |725.12 | |1st half 2017 |4200 |4925.12 |0.06 |148.86 |873.98 | |2nd half 2017 |4400 |5273.98 |0.06 |159.41 |1033.38 | |1st half 2018 |4600 |5633.38 |0.06 |170.27 |1203.65 | |2nd half 2018 |4800 |6003.65 |0.06 |181.46 |1385.11 | +------------------+-----------+--------------+--------------+---------+---------------------+
*計算利息列的公式為
interest = (principal * (1 + (interest rate / 4) ) ^ (0.5 * 4) ) - principal 0.5 is a half of a year 4 is the number of compounding periods
** 本金為期初存款+累計利息
根據我的計算,他應該在 2018 年底之前在他的帳戶中有6185.11
- 6185.11 = 4800 + 1385.11
- 6185.11 = 6003.65 + 181.46
使用複利存款最終價值的公式
i = 0.07 d = 100 n = 6 r = (1 + i/4)^2 - 1 = 0.0353063 a1 = (d (1 + r) ((1 + r)^n - 1))/r = 678.663 i = 0.05 d = 200 n = 2 r = (1 + i/4)^2 - 1 = 0.0251562 a2 = (d (1 + r) ((1 + r)^n - 1))/r + a1 (1 + r)^n = 1128.46 i = 0.06 d = 200 x = 2000 n = 9 r = (1 + i/4)^2 - 1 = 0.030225 a3 = (d (1 + r) ((1 + r)^n - 1))/r + (a2 + x) (1 + r)^n = 6185.11
2018 年底的儲蓄價值為 6185.11 美元