複利

利率如何影響通貨膨脹率

  • April 17, 2018

假設我今天投資 100000。假設利率為 12%,通貨膨脹率為 6%。那麼我將在 2 年後以 12% 的利率和 6% 的通貨膨脹率得到多少。

換句話說,您可以說,利率如何影響通貨膨脹率。

請幫我解決這個問題。我為此苦苦掙扎了很長時間。任何幫助將不勝感激。提前致謝。

通貨膨脹根本不會影響你的名義投資回報,只會影響它的消費能力。如果您以每年 12% 的利率在兩年內投資 100,000 美元,那麼無論通貨膨脹率如何,您都將擁有 125,440 美元。如果您想購買的東西的通貨膨脹率(可能與總體通貨膨脹率不同)是每年 6%,那麼這 125,440 美元只能買到您最初投資時的 111,641 美元。

本金、利率和通貨膨脹

p = 100000
r = 0.12
i = 0.06

兩年後你有

p (1 + r)^2 = 125440.00

然而,考慮到通貨膨脹,在今天的價值是

125440/(1 + i)^2 =  111641.15

這與在每個複利期後調整通貨膨脹相同,如果有乾預現金流,這將是必要的。

year1 =     p (1 + r)/(1 + i) = 105660.38
year2 = year1 (1 + r)/(1 + i) = 111641.15

見<http://financeformulas.net/Real_Rate_of_Return.html>

在此處輸入圖像描述

還有<https://money.stackexchange.com/a/56847/11768>

您可能會發現其他地方提到的快速而骯髒的方法是

p (1 + (r - i))^2 = 112360.00

但這只是懶惰和錯誤的。

使用額外的步驟計算更嚴格x

x = i (1 + r)/(1 + i)

p (1 + (r - x))^2 = 111641.15

羅恩約翰的補充說明

Q&D 方法是錯誤的,因為(1 + (r - i))^2 where r=12% and i=6%減少到1.06^2,而1.12^A增長比 快1.06^A

引用自:https://money.stackexchange.com/questions/89613